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This approach has been very successful

for many traits

AIPL

sires cows

http://www.usda.gov/


. . . . . less for others . . . . 

Phenotypic base = 21.53%

sires

cows

AIPL

http://www.usda.gov/


produce

~80

daughters

and has important limitations
E.g. Need to select Bulls by Progeny Test

Progeny-test

evaluation 

Superior progeny 

tested bull

X
Embryo
Transfer

Which is best??

5 years and

$$$$ later

http://agtr.ilri.cgiar.org/Module/module2/images/Holstein.gif
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Molecular Genetics

Find major genes

or 

markers linked to QTL 

and use these for 

Marker-Assisted Selection



Genes

Major genes

Markers

QTL

Phenotypic

data

Molecular 

data

Marker-Assisted 

Selection

Molec.    genetics

• Expressed in both sexes

• Expressed at early age

• Doesn’t require phenotypes on 
animal itself or close relatives

Marker-Assisted Selection



2004: Limited use of MAS in livestock

• # markers available was limited

• Markers only explain limited % of genetic variance

• Only QTL with moderate – large effects detected

• High genotyping costs

• Marker/QTL effects were not consistent / 

not transferable to commercial breeding 

populations

• ‘Beavis’ effect – effects of ‘significant’ markers 

tend to be overestimated

• Marker effects were estimated within families 

or in experimental crosses 

• Inconsistent marker-QTL LD across populations



Since 2000: A Revolution in Molecular Technology

Nature 2004
2.8 million SNPs

Single
Nucleotide
Polymorphisms

International 
Swine Genome

Sequencing 
Consortium

AAGCCTTGATAATT

AAGCCTTGCTAATT

maternal
paternal

NOW AVAILABLE:
Illumina Bovine 50k Beadchip

50,000 DNA tests for <$100

+ discovery of many

Single
Nucleotide SNPs
Polymorphisms

High-through-put

SNP genotyping



How to use high-density SNP data? 

Conduct Association Analysis
for each SNP - GWAS

Use only 
significant SNPs 

for MAS

Genotype large # of

Individuals

for large numbers of SNPs

+ collect their phenotypes

Allows more significant effects to 
be detected but:

• Small effects are missed



How to use high-density SNP data? 

Conduct Association Analysis
for each SNP - GWAS

Use only 
significant SNPs 

for MAS

Genotype large # of

Individuals

for large numbers of SNPs

+ collect their phenotypes

Use ALL
SNPs

for MAS

Genomic 
selection 

(Meuwissen et al. ‘01)



Genomic Selection/Prediction

Genetic Evaluation using high-density SNPs

•SNP effects are fitted as random vs. fixed effects

• enables all SNPs to be fitted simultaneously

• shrinks SNP effect estimates to 0 depending on evidence from data

Meuwissen et al. 2001 Genetics

Estimates of SNP effects bk

yi = m + S bk gik +  ei
SNP k

Implemented using a variety of

Bayesian methods (Bayes-A, -B, -C, C-p)

Or by using genomic vs. pedigree

relationships in animal model BLUP (GBLUP)

^ Use to estimate 

breeding value of new 

animals based on 

genotypes alone

Genomic EBV = S bk gik
^



Estimate 
effect of 

each SNPGenotype
for 50,000 
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Phenotype

Genotype
for 50,000
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Predict BV 
from marker 
genotypes at 

early age

Genotype
for 50,000 
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Predict BV 
from marker 
genotypes at 

early age

Select at young age

Genomic Selection
Meuwissen et al. 2001



The Promise of Genomic Selection

• Increase accuracy of EBV at a young age

• Reduce need for costly phenotyping

• Reduce generation intervals

• Increase accuracy for ‘difficult’ traits

• Reproduction, longevity, meat quality

• Disease resistance

• Crossbred performance in field

• Reduce rates of inbreeding / generation

• Less emphasis on family information

• Select on animal’s ‘own’ genotypes (for markers)



Applied Animal Breeding 

in the Genomics Era

Outline
1. Implementation of GS in Dairy Cattle in the US

2. Implementation of GS in Pigs Breeding Programs

• GS for Crossbred Performance

3. Implementation of GS in Poultry Breeding Programs

• Experimental evaluation of GS in Layers

4. Genetic Improvement of Host Response to PRRS in Pigs



Wiggans, 2013China Emerging Markets Program Seminar

Holstein prediction accuracy

*2013 deregressed value – 2009 genomic evaluation

Trait Bias* Reliability (%)
Reliability gain 

(% points)

Milk (kg) −80.3 69.2 30.3

Fat (kg) −1.4 68.4 29.5

Protein (kg) −0.9 60.9 22.6

Fat (%) 0.0 93.7 54.8

Protein (%) 0.0 86.3 48.0

Productive life (mo) −0.7 73.7 41.6

Somatic cell score 0.0 64.9 29.3

Daughter pregnancy rate (%) 0.2 53.5 20.9

Sire calving ease 0.6 45.8 19.6

Daughter calving ease −1.8 44.2 22.4

Sire stillbirth rate 0.2 28.2 5.9

Daughter stillbirth rate 0.1 37.6 17.9



17

Larry Schaeffer. 2006, J. Anim. Breed. Genet.



Holstein Genotypes evaluated
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Evaluation date

<50k young Female

<50k young Male

>50k young Female

>50k young Male

<50k old Female

<50k old Male

>50k old Female

>50k old Male

Source: Council on Dairy Cattle Breeding



How is Genomic Selection

changing Dairy Cattle Breeding?

• AI Studs market 

young bulls / bull teams

selected on Genomic EBV

• These young bulls are from ET 

or JIVET of heifers mated to

young bulls

selected on Genomic EBV

X• Use of progeny-

testing is decreasing
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The Future of Dairy Cattle Breeding . . . . 

How can AI companies maintain
market share? 

When Everyone . . . . 

• has access to superior genetics

• can identify such genetics using genomics

• and market that genetics using genomics

How to differentiate/protect your product?
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The Future of Dairy Cattle Breeding . . . . 

How can AI companies maintain market share? 

How to differentiate/protect your product?
• Protect elite germplasm

• Elite nucleus herds with integration of genomic and 
reproductive technologies

• Delay release of young bulls
• Disseminate germplasm as crossbred embryos

• Provide information on new traits?
• Collected in information nucleus herds for genomic 

prediction
• Feed efficiency
• Disease resistance
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Summary/conclusions

Genomic Selection in Dairy Cattle

• Genomic selection is revolutionizing dairy breeding

• Integration of genomic and reproductive 
technologies is reducing generation intervals

• Keys for the future:

• Maintain and further develop phenotype recording 
programs

• Find ways to protect elite germplasm in order to develop 
a competitive advantage

• Inbreeding?



Implementation of Genomic Selection 

in Pig Breeding Programs

• Ongoing in some breeding companies



Typical Breeding Pyramid for Pigs

Van Eenennaam, Weigel, Young, Cleveland, Dekkers

Annu. Rev. Anim. Biosci. 2014. 2:105–39
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Limited opportunities 

to reduce generation

intervals

• Challenges:

– Preselection of candidates for further testing (eg feed intake)

– Selection for female reproduction and longevity

– Selection for feed efficiency

– Selection for carcass/meat quality traits

– Selection for commercial crossbred performance

– Selection for Disease resistance/resilience/robustness

– Limited size of individual nucleus populations



Genomic Selection for Commercial 

Crossbred Performance

Training on Crossbred data         (Dekkers 2007 JAS)

Sire

line

Production herds

Multiplier

Dam

line

Multiplier

NUCLEUS

herds

SNP effect

estimates

Genotype

Phenotype

GenotypeGenomic

EBV

Selection

Genotype Genomic

EBV

Selection



Possible GS training scenarios

Sire

line

Production herds

Multiplier

Dam

line

Multiplier

Genotype

Phenotype

SNP effect

estimates

1. Genotype phenotyped CB  train on own phenotype 
– does not require pedigree

2. Genotype PB and train on CB progeny performance 
– requires pedigree

Prediction models

•CB progeny mean model by 
breed  breed-specific a

•CB dominance model using 

CB genotype probabilities 
(Esfandyari et al. 2014)



Genetic Excellence®

Application of genomic selection

in poultry

A. Wolc *,†, A. Kranis‡,§, J. Arango† , P. Settar†, J.E. Fulton†, 

N. O’Sullivan†, S. Avendaño‡, K.A. Watson‡, R. Preisinger#, 

D. Habier*, S.J. Lamont*, R. Fernando*, 

D.J. Garrick*, J.C.M. Dekkers*

*Department of Animal Science, Iowa State University, Ames, USA, 

† Hy-Line International, Dallas Center, USA, 

‡Aviagen Limited, Newbridge, UK, 

§ Roslin Institute, R(D)SVS, Univ. Edinburgh, Scotland,

# Lohmann Tierzucht GmbH, Cuxhaven, Germany



Genetic Excellence®

Characteristics of chicken breeding programs

• Very large # selection candidates 

and high selection intensity

• Low marginal revenue from a 

single individual

• No cryopreservation

GS has to be cheap

Can’t afford HD 

genotyping or 

sequencing

• Short generation interval 
• overlapping generations every 6 weeks in broilers

• non-overlapping generations every year in layers)

GS has to be fast 

and accurate

• Multiplication pyramid of the 

progress
Small changes

have a big impact



Genetic Excellence®

Breeding pyramid 
– small improvements have large impact

Layers

Parents

GP

Pure lines

1 x 10

7,200,000

600

60,000

24,480,000 eggs

Genetic 

improvement



Implementing GS 

in Pig/Poultry Programs

Problem
High cost of genotyping value of an individual

Very large numbers of selection candidates

Impossible to implement genomic selection based on high 
density genotyping in cost efficient manner

Solution
Combination of strategic genotyping and imputation



Progeny

Sire  

Dam 

paternal
maternal

paternal
maternal

paternal

maternal

LD-SNPs

LD-SNPs

Genomic Selection using Low-Density Panels
(Habier,  Fernando, Dekkers,  2009, Genetics)

(Wolc, et al. 2013)



Genetic Excellence®

Evolution in Chicken SNP Panels

2004     2005      2006 2007       2008      2009      2010     2011      2012      2013      2014  

Draft 
sequence of 

Chicken 
Genome

6,000 SNP
EW

Illumina
Proprietary

12,000 SNP
EW

Illumina
Proprietary

60,000 SNP
USDA, Cobb-

Vantress
Hendrix
Illumina

Proprietary
(release by 
agreement)

600,000 SNP
EW

Roslin
BBSRC

Affymetrix
Commercially

available

42,000 SNP
EW

Illumina
Proprietary

(limited release for 
research purposes)

50,000 SNP
EW

Affymetrix
Proprietary



Genetic Excellence®
Genetic Excellence®

Experimental Implementation of Genomic 
Selection in Layer Chickens

©  Hy-Line International

Anna Wolc, Neil O’Sullivan, Janet Fulton, Petek Settar and Jesus Arango 

HY-LINE INTERNATIONAL 

Jack Dekkers, Chris Stricker, Nathan Bowerman, 

Rohan Fernando, Dorian Garrick, David Habier and Sue Lamont 

IOWA STATE UNIVERSITY



Research Objective
Evaluate and demonstrate

the advantages and pitfalls of Genomic Selection
in a commercial breeding population

Implementation of Genomic Selection

in Layer Chickens

Research Questions / Goals
In layer chickens, Genomic Selection can:

• increase response by halving the generation interval

• without increasing the rate of inbreeding per year

• in a breeding program comprising fewer individuals



 

 

Selection strategy Traditional Genomic 

Selection parameters ♂♂ ♀♀ ♂♂ ♀♀ 

# candidates/gener. 1,000 3,000 300 300 

# phenotyped a  3,000  300 

# selected       60     360      50b      50b 

Generation interval 12 moc 12 moc 6 mod 6 mod 
a
 Complete phenotypes available at ~10 months of age 

b  
Equal selection of ♂ and ♀ maximizes response for given F  

c
 Traditional selection is after ♀♀ are phenotyped  12 mo. 

  Traditional selection is limited by cost to rear and phenotype 

  Male traditional selection is on sib data low accuracy high F
 

d
 GS selection is before ♀♀ are phenotyped  6 months 

 

 

  Selection strategy Traditional Genomic 

Selection parameters ♂♂ ♀♀ ♂♂ ♀♀ 

# candidates/gener. 1,000 3,000  300   300 

# phenotyped a  3,000    300 

# selected      60    360     50b       50b 

generation interval 12 moc 12 moc 6 mod   6 mod 
a
 Complete phenotypes available at ~10 months of age 

b  
Equal selection of ♂ and ♀ maximizes response for given F  

c
 Traditional selection is after ♀♀ are phenotyped  12 months 

  Traditional selection is limited by cost to rear and phenotype 

  Male tradit. selection is on sib data low accuracy high F
 

d
 Genomic selection is before ♀♀ are phenotyped  6 months 

Breeding Program Design

A Layer Chicken Example
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             Strategy Traditional WGS 

Parameters ♂♂ ♀♀ ♂♂ ♀♀ 

# candidates/gener. 1,000 3,000 300 300 

# phenotyped a  3,000  300 

# selected       60     360      50b      50b 

Generation interval 12 moc 12 moc 6 mo d 6 mo d 

Expected Response and Inbreeding
Based on simulation

Dekkers NBCEC 2010 Wolc et al. GSE 2015



Genetic Excellence®

Modified Genomic Selection Program

300

♂ ♀

300

50

Genotype and

select on GEBV

150X
5 mating groups of
10 ♂ and 30 ♀

~ 6 ♂ and 6 ♀
progeny / hen

150 ♀

♂ ♀

Phenotype

Selected on index

of phen + GEBV♀50

300 300♂ ♀

Progeny of best 50 hens 

Genotype

Assign sire

Select on GEBV

♂ ♀50 150 150♀



Genetic Excellence®

Different methods for genomic prediction
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PED GBLUP BayesB95 BayeCPi

Wolc et al. GSE 2015



Genetic Excellence®

Response to Selection

Implementing GS in Layer Chickens 

             Strategy Traditional WGS 

Parameters ♂♂ ♀♀ ♂♂ ♀♀ 

# candidates/gener. 1,000 3,000 300 300 

# phenotyped a  3,000  300 

# selected       60     360      50b      50b 

Generation interval 12 moc 12 moc 6 mo d 6 mo d 

Wolc et al. GSE 2015



Genetic Excellence®

Inbreeding

0,00

0,01

0,02

0,03

0,04

F 

Generation

2004MH

GS line

Traditional line

Implementing GS in Layer Chickens 

             Strategy Traditional WGS 

Parameters ♂♂ ♀♀ ♂♂ ♀♀ 

# candidates/gener. 1,000 3,000 300 300 

# phenotyped a  3,000  300 

# selected       60     360      50b      50b 

Generation interval 12 moc 12 moc 6 mo d 6 mo d 

Wolc et al. GSE 2015



Train on data prior 

to generation 1

Need for Retraining
Wolc et al. (GSE, 2012)



Implementation of Genomic Selection 

in Pig/Poultry Breeding Programs

• Requirements

• Large numbers of genotyped animals

• Focus on breeders with large amounts of data

• Use of Genotype imputation

• Computing resources

• Logistics of DNA collection, phenotype 

collection, genotyping, analysis

• Continued phenotype recording (retraining)

• Consider redesign of breeding program



Applied Animal Breeding 

in the Genomics Era

Outline
1. Implementation of GS in Dairy Cattle in the US

2. Implementation of GS in Pigs Breeding Programs

• GS for Crossbred Performance

3. Implementation of GS in Poultry Breeding Programs

• Experimental evaluation of GS in Layers

4. Genetic Improvement of Host Response to PRRS in Pigs



Porcine Reproductive and 

Respiratory Syndrome - PRRS

Sows
 Abortions

 Stillborn/weak pigs

 Delayed estrus

 Respiratory

problems

Grower
 Increased 

mortality

 Decreased 

production

 Respiratory 

problems

Large financial loss in both production settings

Respig.com Respig.com

 Eradication

 Biosecurity

 Vaccination

 Host genetics

Strategies to

control PRRS



Objective

Use genomics to identify genes / genomic regions associated 

with resistance / susceptibility to PRRS virus infection

Led by
Joan Lunney  – USDA – ARS Beltsville

Bob Rowland   – Kansas State University

Jim Reecy – Iowa State University

Jack Dekkers – Iowa State University

Strong Industry Participation

PHGC Breeding Companies 

Fast 

Genetics, Genesus, Genetiporc, Choi

ce, PIC, TOPIGS

60 k SNP chip
Illumina

GeneSeek2007



Nursery Pig

Challenge Model

Weight

Serum

Slaughter

Ear for DNA

-7 0 7 11 14 21 35 424 28

Serum

Antibiotics

Acclimation

Birth Weight

Serum

Inoculation

Weight

Serum
Weight

Serum

Weight

Serum
Weight

Serum

Weight

Serum

Serum Serum

Day post 

infection

R.R.R. Rowland et al.,    Kansas State University

Groups of ~200 commercial crossbred pigs infected with 

PRRS virus isolate NVSL97-7985 between 18 and 28 d of age
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Viral Load Weight Gain

Genome-wide Association Study
Boddicker et al. 2012, 2014a,b

Chr 4 Chr 4

1 Mb region

explains 15% 

of genetic 

variance

Includes

important

candidate 

genes

GBP1

GBP2

GBP5

GTF2B

PKN2

11% of 

genetic 

variance
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Boddicker et al. 2012, 2014a,b



Effects of SSC4 SNP 

WUR10000125
Hess et al. 2015

VIRAL LOAD WEIGHT GAIN



Train on 

trials 1-3

N ~ 550

Validate on 

trial 8

Validate on 

trial 7

Validate on 

trial 6

Validate on 

trial 5

Validate on 

trial 4
= ziâi

i=1

n

åGEBVi

Genomic Prediction of PRRS 

infection response
(Boddicker et al. 2014 GSE)

Acc = rGEBV,P/h

Acc = rGEBV,P/h

Acc = rGEBV,P/h

Acc = rGEBV,P/h

Acc = rGEBV,P/h

Accuracy

N ~ 195

N ~ 180

N ~ 115

N ~ 195

N ~ 185



Genomic Prediction Validation
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Validation
Population

KS06
n = 706

NVSL
n = 1598

Training 
Population

Whole Genome

Genome – 5 Mb SSC4 region

NVSL
n = 1598

KS06
n = 706

Whole Genome

Accuracy = rP,EBV/√h
2
Validation

Genome – 5 Mb SSC4 region



70% 70%





Nursery Pig
PRRS  infection

PHGC, Genome Canada

Nursery Pig
PCV2 infection
Ciobanu, Nebraska

Gilt Acclimation
Field challenges
PigGen Canada, CSHB

Pregnant Gilt
PRRS infection

Harding, Saskatchewan

S
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L

E

S

+

D

A

T

A

Project databases

60 SNP 

GWAS
Transcriptomics

Proteomics

Genome Wide Associations

Genomic Prediction

Models of PRRS infection dynamics

Improved vaccine targets

Applications

Kinomics

In Vitro Assays

Nursery Pig
PRRS-PCV2 co-infection

USDA-NIFA

Growing Pig
Field challenges

USDA-NIFA

Integrated International 

Interdisciplinary Projects



Funding Industry Partners



Reproductive PRRS Outbreak Study

Serão N.V.L., O. Matika, R.A. Kemp, J.C.S. Harding, S.C. 

Bishop, G.S. Plastow, J.C.M. Dekkers

Genetic analysis of reproductive traits and antibody response

in a PRRS outbreak herd

Journal of Animal Science (2014) 92:2905-2921



Identification of PRRS outbreak

• PRRS Outbreak (Winter of 2011/12)
Outbreak

Blood 
collection
for PRRS 

Elisa

~46 days

# born alive

# stillborn

# alive 24 hr

# mummified

641 sows in herd during outbreak

- 519 with data from pre-PRRS phase



Trait

Pre-PRRS
phase PRRS

phase

# born alive 0.08 (.03) 0.09 (.07)

# stillborn 0.12 (.03) 0.06 (.07)

# mummified 0.01 (.01) 0.08 (.07)

% born dead 0.09 (.02) 0.07 (.06)

# weaned 0.03 (.02) 0.09 (.07)

S/P ratio - - 0.45 (0.13)

Estimates of heritability (se)

Pheno-
typic

correl. 

Genetic
corre-
lation

0.06 (.05) 0.73 (.24)

-0.07 (.05) -0.72 (.28)

-0.04 (.05) -0.66 (.28)

-0.04 (.05) -0.70 (.27)

-0.04 (.05) -0.58 (.29)

Correlations of S/P 

ratio with

reproductive traits 

during PRRS phase

Reproductive PRRS 

Outbreak Study



Genomic Regions affecting

S/P ratio 

SSC7
24-30 Mb

25 %

SSC7
128-129 Mb

16 %

SSC7
40 Mb
3 %

Serão N.V.L., O. Matika, R.A. Kemp, J.C.S. Harding, 

S.C. Bishop, G.S. Plastow, J.C.M. Dekkers

Journal of Animal Science (2014) 92:2905-2921



Nucleus / AI Units

Multiplier Herds n=17 

High health status

Gilt Acclimation n=2,700

Commercial herds n=22

Low health status

S
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Outcomes

Genetic selection tools

Early life indicators of health and performance

Improved sow health, longevity and welfare

Health data genetic collection system and data resource

Outcomes

General immune capacity

GWAS of general 
immune response

Genomic predictions
of sow health

Integrated database resource 
and collection system

Gilt Acclimation Project 

Groups of Clean Replacement Gilts  Health Challenged Herds



Gilt Acclimation - Initial Results

• Heritabilities

• Average Daily Gain during acclimation 0.09

• PRRSv S/P ratio 

• On entry (  3% PRRS+) 0.13

• During acclimation (~40 days after entry) 0.47

(83% PRRS+)

• During first parity    (67% PRRS+) 0.11

Serão N.V.L., R.A. Kemp, B.E. Mote, J.C.S. Harding, 

P. Wilson, S.C. Bishop, G.S. Plastow, J.C.M. Dekkers

10th World Congress Genetics Applied to Livestock Production (2014)



SSC7

128 Mb

SSC7

24-31 Mb

Serão et al. (2014a)

S/P ratio @ ~42 days

24-30 Mb: 25%

128-129 Mb: 16% 

Effects of MHC on S/P ratio validated



Accuracy of Genomic Prediction

for PRRS S/P Ratio

Can we use genetic marker effects estimated in the gilt 

acclimation data to predict S/P ratio in the outbreak herd?

Training (Gilt Acclimation)

Day 0 S/P
(n = 2220; h2 = 0.42)

Post-Acclimation S/P
(n = 2095; h2 = 0.31)

Parity 1 S/P
(n = 919; h2 = 0.12)

Validation (Outbreak Herd) 
(Serão et al., 2014a)

S/P ratio @ ~ 42 days

(n = 629; h2 = 0.42)

PredictionAccuracy =
r

(GEBV ,Phenotype)

h2

Genomic

prediction
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Can we use genomic predictions for S/P 

ratio based on the gilt acclimation data to 

predict reproductive performance in the 

outbreak herd?

Training (Gilt Acclimation)

Day 0 S/P
(n = 2220; h2 = 0.42)

Post-Acclimation S/P
(n = 2095; h2 = 0.31)

Parity 1 S/P
(n = 919; h2 = 0.12)

S/P ratio @ ~ 42 days

(n = 629; h2 = 0.42)

PredictionAccuracy =
r

(GEBV ,Phenotype)

h2

Genomic

prediction

Reproductive 

Performance

(n = 402; h2 = 0.08)

rg = 0.65-0.75

Validation (Outbreak Herd)
(Serão et al., 2014a)



Serão et al. (2015)

# Born Alive

# Mummies

# Stillborn

Genetic correlation 
with S/P ratio in 

outbreak herd

#born 
alive

0.73
(.24
)

#mummies -0.66
(.28
)

#stillborn -0.72
(.28
)

Genomic Prediction

of Reproductive

Performance

based on

S/P ratio



Conclusions - PRRS

 Piglet response to experimental PRRSv challenge 

has a sizeable genetic component.

 A region on Chromosome 4 contains a major gene for host response

to PRRSv in growing piglets.

 PRRS S/P ratio following PRRS challenge is heritable and may be a 

good genetic indicator of reproductive performance during PRRS.

 The MHC is a major contributor to differences in PRRS S/P ratio 

following challenge but not necessarily to reproductive performance 

during a PRRS outbreak.

 Genetic selection for improved host response 
to PRRSv appears possible

 and can be an important component in the fight against PRRS



Final Conclusions

• GS is revolutionizing dairy cattle breeding

• GS has promise also for other species

• But requires:

•Large data sets, continuous re-training

•Strategic use of low-density panels 
and genotype imputation to reduce 

cost

•May require redesign of breeding programs

•Initial implementation likely within breeds

• Across-breed prediction problematic at present

•GWAS remains important for traits
without routine phenotype 


